

CE EMC Test Report

(EN 50155 & EN 50121-3-2)

Report No.: CE190717C16-1

Test Model: SPC-5600A (with Fan Bracket)

for marketing purpose)

Received Date: Jul. 17, 2019

Test Date: Jul. 23 ~ Dec. 13, 2019

Issued Date: Dec. 25, 2019

Applicant: Vecow Co., Ltd.

Address: 12F, No.111, Zhongcheng Rd., Tucheng Dist., New Taipei City 236, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, TAIWAN

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Rel	Release Control Record4				
1	Certificate of Conformity5				
2	Summary of Test Results	6			
2. 2. 2.	2 Measurement Uncertainty	8			
3	General Information	9			
3. 3. 3. 3.	Operating Modes of EUT and Determination of Worst Case Operating Mode	9 10 10			
4	Configuration and Connections with EUT	12			
4. 4.					
5	Conducted Disturbance at Auxiliary a.c. or d.c. Power Ports	16			
5. 5. 5. 5.	Test Instruments	16 17 18			
6	Radiated Disturbance up to 1 GHz	20			
6. 6. 6.	Test Instruments	20 21			
7	Radiated Disturbance above 1 GHz	24			
7.: 7.: 7.: 7.:	Test Instruments	25 26			
8	Electrostatic Discharge Immunity Test (ESD)	29			
8. 8. 8. 8.	Test Instruments	29 30			
9	Radio-frequency Electromagnetic Field Immunity Test (RS)	37			
9. 9. 9. 9.	Test Instruments	37 38			
10	Electrical Fast Transient/Burst Immunity Test (EFT)	39			
10 10 10 10	0.2 Test Instruments	39 39 40			
• •	ourge minumity rest	41			

11.1	Test Specification	41
11.2	Test Instruments	
11.3	Test Arrangement	42
11.4	Test Results	42
12 lm	munity to Conducted Disturbances Induced by RF Fields (CS)	43
12.1	Test Specification	43
12.2	Test Instruments	
12.3	Test Arrangement	44
12.4	Test Results	45
13 Pic	ctures of Test Arrangements	46
13 Pic 13.1	-	
	Conducted Disturbance at Auxiliary a.c. or d.c. power ports Radiated Disturbance up to 1 GHz	46
13.1	Conducted Disturbance at Auxiliary a.c. or d.c. power ports	46 47
13.1 13.2	Conducted Disturbance at Auxiliary a.c. or d.c. power ports	46 47 48
13.1 13.2 13.3	Conducted Disturbance at Auxiliary a.c. or d.c. power ports	46 47 48 49
13.1 13.2 13.3 13.4	Conducted Disturbance at Auxiliary a.c. or d.c. power ports Radiated Disturbance up to 1 GHz Radiated Disturbance above 1 GHz Electrostatic Discharge Immunity Test (ESD) Radio-frequency Electromagnetic Field Immunity Test (RS)	46 47 48 49
13.1 13.2 13.3 13.4 13.5	Conducted Disturbance at Auxiliary a.c. or d.c. power ports Radiated Disturbance up to 1 GHz Radiated Disturbance above 1 GHz Electrostatic Discharge Immunity Test (ESD) Radio-frequency Electromagnetic Field Immunity Test (RS) Fast Transients (EFT)	
13.1 13.2 13.3 13.4 13.5 13.6	Conducted Disturbance at Auxiliary a.c. or d.c. power ports Radiated Disturbance up to 1 GHz Radiated Disturbance above 1 GHz Electrostatic Discharge Immunity Test (ESD) Radio-frequency Electromagnetic Field Immunity Test (RS)	

Release Control Record

Issue No.	Description	Date Issued
CE190717C16-1	Original Release	Dec. 25, 2019

1 Certificate of Conformity

Product: High Performance System

Brand: Vecow

Test Model: SPC-5600A (with Fan Bracket)

purpose)

Sample Status: Mass product

Applicant: Vecow Co., Ltd.

Test Date: Jul. 23 ~ Dec. 13, 2019

Standards: EN 50155:2007 +AC:2010 +AC:2012, Clause 12.2.7 & 12.2.8

EN 50121-1:2017 EN 50121-3-2:2016

EN 61000-6-4:2007 +A1:2011

EN 61000-4-2:2009

EN 61000-4-3:2006 +A1:2008 +A2:2010

EN 61000-4-4:2012

EN 61000-4-5:2014 +A1:2017 EN 61000-4-6:2014 +AC:2015

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Mana

Prepared by :	Lend Ward	, Date:	Dec. 25, 2019	
	Lena Wang / Specialist			
Approved by :	Col Chen	, Date:	Dec. 25, 2019	
	Carl Chen / Project Engineer			

Report No.: CE190717C16-1 Page No. 5 / 55 Report Format Version: 6.1.1

2 Summary of Test Results

EN 50121-3-2:2016, Emission EN 50155:2007 +AC:2010 +AC:2012, Clause 12.2.8.2			
Port			
Auxiliary a.c. or d.c. power ports - Auxiliary supply sinusoidal a.c. or d.c.	Conducted disturbance 150 kHz-500 kHz: 99 dBµV quasi-peak 500 kHz- 30 MHz: 93 dBµV quasi-peak	Minimum passing margin is -42.94 dB at 12.58350 MHz	Pass
Auxiliary a.c. or d.c. power ports – AC power outlet port for public use	Conducted disturbance 50 Hz-2 kHz: THD <8% (THD: total harmonic distortion)	Test not applicable because the port does not exist.	N/A
Battery referenced ports - Battery power supply	Conducted disturbance 150 kHz-500 kHz: 99 dBµV quasi-peak 500 kHz- 30 MHz: 93 dBµV quasi-peak	Test not applicable because the port does not exist.	N/A
Enclosure	Radiated disturbance 30 MHz-230 MHz: 40 dBµV/m quasi-peak 230 MHz -1 GHz: 47 dBµV/m quasi-peak	Minimum passing margin is -1.73 dB at 615.99 MHz	Pass
Enclosure	Radiated disturbance 1 GHz-3 GHz: 76 dBµV/m peak 56 dBµV/m average 3 GHz - 6 GHz: 80 dBµV/m peak 60 dBµV/m average	Minimum passing margin is -5.04 dB at 1386.02 MHz	Pass

	EN 50121-3-2:2016, Immunity requirements,					
Table Clause	Rasic standard Port Lest Item / specifications Result/Remarks Mardi					
3.1	EN 61000-4-6:2014 +AC:2015	Battery referenced ports (except at the output of energy sources), Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms)	Radio-frequency common mode (CS) 80% AM (1kHz) 0.15-80 MHz, 10V Performance Criterion A	Performance Criterion A	Pass	
3.2	EN 61000-4-4:2012	Battery referenced ports (except at the output of energy sources), Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms)	Fast Transients (EFT) 5/50 (T _r /T _h) ns, 5kHz ±2kV Performance Criterion A	Performance Criterion A	Pass	
3.3	EN 61000-4-5:2014 +A1:2017	Battery referenced ports (except at the output of energy sources), Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms)	Surges 1.2/50 (8/20) (T _r /T _h) μs Line to ground: ±2kV 42 Ω, 0.5 μF Line to line: ±1kV 42 Ω, 0.5 μF Performance Criterion B	Performance Criterion A	Pass	

Report No.: CE190717C16-1 Page No. 6 / 55 Report Format Version: 6.1.1

	EN 50121-3-2:2016, Immunity requirements, EN 50155:2007 +AC:2010 +AC:2012, Clause 12.2.7 & 12.2.8.1				
Table Clause	I Racic standard I Port I Last Itam / spacifications		Result/Remarks	Verdict	
4.1	EN 61000-4-6: 2014 +AC:2015	Signal & communication, process measurement & control ports	Radio-frequency common mode (CS) 80 AM (1kHz) 0.15-80 MHz, 10V	Performance Criterion A	Pass
4.2	Signal & communication, Fast Transients (EFT) communication, 5/50 (T/Ts) ps 5kHz Perf		Performance Criterion A	Pass	
5.1	EN 61000-4-3:2006 +A1:2008 +A2:2010	Enclosure ports	Radio-frequency electromagnetic field amplitude modulated (RS) ¹ , 80% AM (1kHz) 80-800 MHz, 20V/m Performance Criterion A	Performance Criterion A	Pass
5.2	EN 61000-4-3:2006 +A1:2008 +A2:2010	Enclosure ports	Radio-frequency electromagnetic field from digital mobile telephones (RS) ² , 80% AM (1kHz) 800-1000 MHz, 20V/m 1400-2000 MHz, 10V/m 2000-2700 MHz, 5V/m 5100-600 MHz, 3V/m Performance Criterion A	Performance Criterion A	Pass
5.3	EN 61000-4-2:2009	Enclosure ports	Electrostatic Discharges (ESD) ±6kV Contact discharge ±8kV Air discharge Performance Criterion B	Performance Criterion B	Pass

Note 1: This limit applies to equipment mounted in the passenger compartments, drivers cab or external to the rolling stock (roof, underframe). For equipment mounted in all other areas a severity level of 10 V/m may be used.

Note 2: For large apparatus (e.g. traction drives, auxiliary converters) it is often not practical to perform the immunity test to radiated electromagnetic fields on the complete unit. In such cases the manufacturer should test susceptible sub-systems (e.g. control electronics). The test report should justify the selection or not of sub-systems and any assumptions made (e.g. reduction of field due to case shielding).

N/A: Not Applicable

Note:

- 1. There is no deviation to the applied test methods and requirements covered by the scope of this report.
- 2. The above EN basic standards are applied with latest version if customer has no special requirement.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Performance Criteria

General Performance Criteria

The general performance criteria apply for those ports for which no specific performance criteria are defined (e.g. auxiliary ports) in the report.

Performance criterion A: The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended..

Performance criterion B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Performance criterion C: Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls.

2.2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Expanded Uncertainty (k=2) (±)	Maximum allowable uncertainty (±)
Conducted disturbance at mains port using AMN, 150kHz ~ 30MHz	2.79 dB	3.4 dB (<i>U</i> cispr)
Radiated disturbance, 30MHz ~ 1GHz	4.14 dB	6.3 dB (<i>U</i> cispr)
Radiated disturbance, 1GHz ~ 6GHz	5.04 dB	5.2 dB (<i>U</i> _{cispr})

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.3 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 Description of EUT

Product	High Performance System
Brand	Vecow
Test Model	SPC-5600A (with Fan Bracket)
Series Model	SPC-5XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Model Difference	Refer to note for more details
Sample Status	Mass product
Operating Software	Windows 10
Power Supply Rating	24 Vdc (Adapter)
Accessory Device	Refer to Note as below
Cable Supplied	Refer to Note as below

Note:

1. All models are listed as below.

Brand	Model	Difference
	SPC-5600A (with Fan Bracket)	All models are electrically identical,
	0.0000000000000000000000000000000000000	different model names are for marketing purpose.

2. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter	Meanwell	GST160A24_R7B (160W)	I/P: 100-240 Vac, 50/60 Hz, 2 A O/P: 24 Vdc, 6.67 A, 160W Max. 1.2 m non-shielded cable with 1 core
CPU	Intel	17-8700	3.2GHz
Motherboard	Vecow	EXBC-1100	
SSD	Innodisk	3MG2-P	64G
DDR4	DSL	D4SN1G081SH26B-CI	8GB

3.2 Operating Modes of EUT and Determination of Worst Case Operating Mode

Test modes are presented in the report as below.

	est modes are presented in the report as below.		
	Mode	Test Condition	
		Conducted Emission	
1 1		LAN Link + Switch with cable + USB with M/S + USB with K/B + USB with HDD*2 + RS232 Terminal + Mic+Earphone + DP with Monitor*2 + DVI-I with Monitor + Adapter	
Radiated Emission		Radiated Emission	
	1	LAN Link + Switch with cable + USB with M/S + USB with K/B + USB with HDD*2 + RS232 Terminal + Mic+Earphone + DP with Monitor*2 + DVI-I with Monitor + Adapter	

Mode	Test Condition
	ESD tests
1	LAN Link + Switch with cable + USB with M/S + USB with K/B + USB with HDD*2 + RS232 Terminal + Mic+Earphone + DP with Monitor*2 + DVI-I with Monitor + Adapter
	RS, Surge tests
1	LAN Link + Switch with cable + USB with M/S + USB with K/B + USB with Flash*2 + RS232 Terminal + Mic+Earphone + DP with Monitor*2 + DVI-I with Monitor + Adapter
	EFT, CS tests
1	LAN Link + Switch with cable + USB with M/S + USB with K/B + USB with Flash *2 + RS232 Terminal + Mic+Earphone + DP with Monitor*2 + DVI-I with Monitor + Adapter
2	LAN Link + Switch with cable + USB with M/S + USB with K/B + USB with Flash *2 + RS232 Terminal + Mic+Earphone + DP with Monitor*2 + DVI-I with Monitor + Adapter <telecommunication 1="" cable="" lan="" port="" with=""></telecommunication>
3	LAN Link + Switch with cable + USB with M/S + USB with K/B + USB with Flash *2 + RS232 Terminal + Mic+Earphone + DP with Monitor*2 + DVI-I with Monitor + Adapter <telecommunication 4="" cable="" lan="" port="" with=""></telecommunication>

3.3 Test Program Used and Operation Descriptions

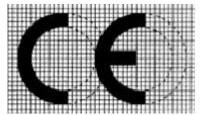
<Emission Tests>

- a. The EUT was charged from adapter.
- b. The EUT linked with Notebooks via LAN cables.
- c. The EUT sent audio signal to the earphone.
- d. The EUT linked with Monitors via DP and DVI cables.
- e. The EUT read and wrote data with HDDs.
- f. The EUT linked with Keyboard and Mouse via USB Cable.
- g. The EUT linked with Terminals, I/O Cable and GND Cable.
- h. The EUT communicated data with the Notebooks, which acted as communication partners.

<lmmunity Tests>

- a. The EUT was charged from adapter.
- b. The EUT linked with Notebooks via LAN cables.
- c. The EUT sent audio signal to the earphone.
- d. The EUT linked with Monitors via DP and DVI cables.
- e. The EUT read and wrote data with Flashes and HDDs.
- f. The EUT linked with Keyboard and Mouse via USB Cable.
- g. The EUT linked with Terminals, I/O Cables and GND Cable.
- h. The EUT communicated data with the Notebooks, which acted as communication partners

3.4 Primary Clock Frequencies of Internal Source


The highest frequency generated or used within the EUT or on which the EUT operates or tunes is 3700 MHz, provided by {applicant}, for detailed internal source, please refer to the manufacturer's specifications.

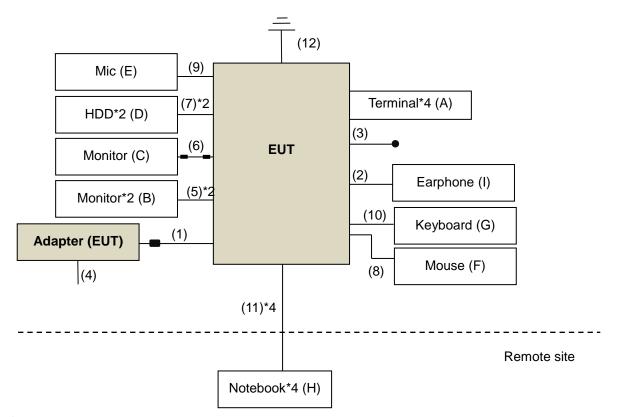
3.5 Miscellaneous

> Affix CE marking

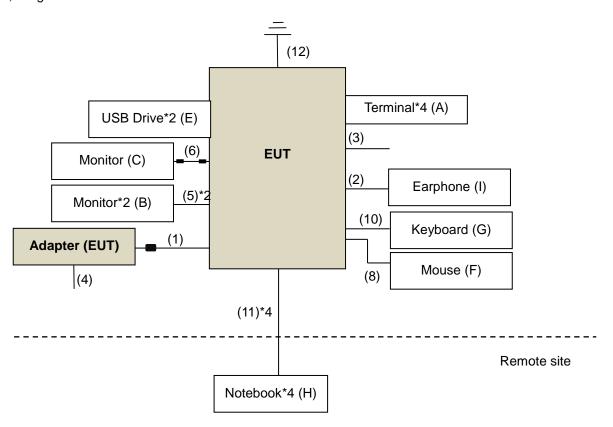
The marking must be placed visibly and legibly on the product or, if not possible due to the nature of the product, be affixed to the packaging and the accompanying document. The CE marking shall consist of the initials 'CE' taking the following form:

The various components of the CE marking must have the same vertical dimension, and may not be smaller than 5 mm. If the CE marking is reduced or enlarged, the proportions given in the graduated drawing above must be respected.

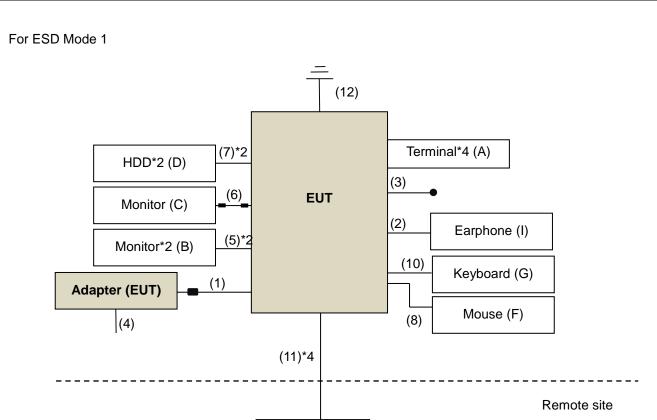
When the product is subject to other Directives covering other aspects and which also provide for the 'CE' marking, the accompanying documents must indicate that the product also conforms to those other Directives.


However, when one or more of those Directives allow the manufacturer, during a transitional period, to choose which arrangements to apply, the 'CE' marking has to indicate conformity only with the Directives applied by the manufacturer. In this case, the particularities of the Directives applied, as published in the Official Journal of the European Union, must be given in the documents, notices or instructions required by the Directives and accompanying such products.

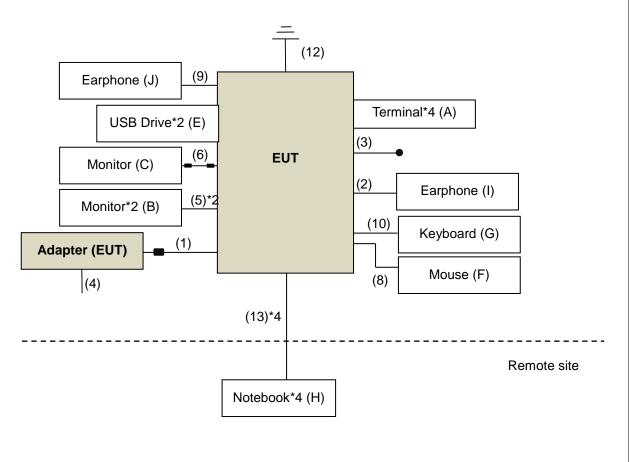
4 Configuration and Connections with EUT


4.1 Connection Diagram of EUT and Peripheral Devices

Emission tests


Immunity tests:

For RS, Surge Mode 1 & CS Mode 1~3


Report No.: CE190717C16-1 Page No. 12 / 55 Report Format Version: 6.1.1

Notebook*4 (H)

For EFT Mode 1 ~ 3

4.2 Configuration of Peripheral Devices and Cable Connections

Emission tests:

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks				
A.	Terminal*4	N/A	N/A	N/A	N/A	Provided by client				
В.	LCD Monitor*2	ASUS	MX27U	H3LMRS034164 J3LMRS000059	N/A					
C.	LCD Monitor	DELL	U2410	CN082WXD-72872- 0CR-06DL	FCC DoC Approved					
			DTDOOF	45TGCNNST3ZB	N/A					
D.	HDD*2	HDD*2	HDD*2	HDD*2	HDD*2	Toshiba	DTB305	45U6CMTJT3ZB	N/A	
E.	MICROPHONE	Labtec	LVA7313	N/A	N/A					
F.	USB Mouse	DELL	MOCZUL	CN-049TWY-PRC00- 79E-02FW	N/A					
G.	USB Keyboard	Dell	KB216t	CN-0W33XP-LO300- 79R-OUG6-A03	N/A					
				6QLNM32	N/A					
l	H. Notebook*4 DELL	DELL	E0440	FMLNM32	N/A					
H.		Notebook*4 DELL	E6440	FNLNM32	N/A					
				G4QPM32	N/A					
I.	Earphone	PHILIPS	SBC HL150	N/A	N/A					

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items H acted as communication partners to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.2	N	1	Accessory of the EUT
2.	Audio Cable	1	1.2	Ζ	0	
3.	I/O Cable	1	0.3	N	0	
4.	Power Cord	1	1.8	Ν	0	
5.	DP Cable	1	1.8	Υ	0	
6.	DVI Cable	1	1.8	Υ	2	
7.	USB Cable	1	0.5	Υ	0	
8.	USB Cable	1	1.8	Υ	0	
9.	Audio Cable	1	1.5	Ν	0	
10.	USB Cable	1	1.8	Υ	0	
11.	LAN Cable	1	10	N	0	RJ45, Cat5e
12.	GND Cable	1	1.5	N	0	

Note: The core(

Immunity tests:

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Terminal*4	N/A	N/A	N/A	N/A	Provided by client
		AOC	240LM00016	GKAJ5HA117767		
B.	Monitor	Dell	U2414H 23.8" Monitor	CN-04CWX7-74261- 47H-4N9L	N/A	
C.	Monitor	HP	D7Q14A4	CNC437015Q	N/A	
D.	HDD*2	Transcend	TS1TSJ25MC	N/A	N/A	
E.	USB Drive*2	Transcend	N/A	N/A	N/A	
F.	USB Mouse	Logitech	M100r	N/A	N/A	
G.	USB Keyboard	Logitech	K120	N/A	N/A	
				JVXSD82	N/A	
	N - 4 - 1 1 - * 4	DELL	Inspiron 15 3000	JBXSD82	N/A	
H.	. Notebook*4	book*4 DELL		8WXSD82	N/A	
				HBXSD82	N/A	
l.	Earphone	PHILIPS	SHM2100	N/A	N/A	
J.	Earphone	ASUS	Cerberus	N/A	N/A	

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items H acted as communication partners to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.2	N	1	Accessory of the EUT
2.	Audio Cable	1	2	Ν	0	
3.	I/O Cable	1	0.3	Z	0	Provided by client
4.	Power Cord	1	1.8	Ν	0	
5.	DP Cable	1	1.8	Υ	0	
6.	DVI Cable	1	1.8	Υ	2	
7.	USB Cable	1	0.5	Υ	0	
8.	USB Cable	1	1.8	Υ	0	
9.	Audio Cable	1	1.25	N	0	
10.	USB Cable	1	1.8	Υ	0	
11.	LAN Cable	1	10	N	0	RJ45, Cat5e
12.	GND Cable	1	1.5	N	0	
13.	LAN Cable	1	3	Υ	0	RJ45, Cat5e

Note: The core(s) is(are) originally attached to the cable(s).

5 Conducted Disturbance at Auxiliary a.c. or d.c. Power Ports

5.1 Limits

Frequency (MHz)	Quasi-peak, (dBuV)
0.009 - 0.15	no limits
0.15 - 0.5	99
0.5 - 30	93

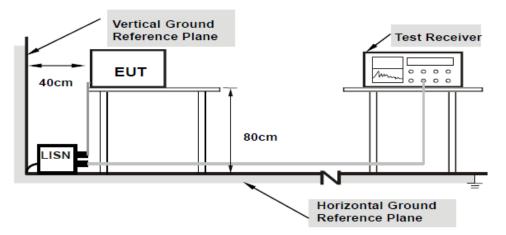
Notes: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESR3	102412	Feb. 14, 2019	Feb. 13, 2020
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Sep. 05, 2018	Sep. 04, 2019
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Jan. 30, 2019	Jan. 29, 2020
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Aug. 13, 2018	Aug. 12, 2019
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-12047.

5.3 Test Arrangement

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The tset results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

5.4 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	230Vac, 50Hz	Environmental Conditions	26℃, 72%RH
Tested by	Pon Tsai	Test Date	2019/7/23
Test Mode	Mode 1		

	Phase Of Power : Line (L)						
	Frequency	Correction	Reading Value	Emission Level	Limit	Margin	
No		Factor	(dBuV)	(dBuV)	(dBuV)	(dB)	
	(MHz)	(dB)	Q.P.	Q.P.	Q.P.	Q.P.	
1	0.15000	10.07	34.83	44.90	99.00	-54.10	
2	0.26718	10.07	24.42	34.49	99.00	-64.51	
3	0.38260	10.07	35.93	46.00	99.00	-53.00	
4	8.41425	10.24	33.78	44.02	93.00	-48.98	
5	12.58371	10.34	38.76	49.10	93.00	-43.90	
6	21.80175	10.48	32.54	43.02	93.00	-49.98	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	230Vac, 50Hz	Environmental Conditions	26℃, 72%RH
Tested by	Pon Tsai	Test Date	2019/7/23
Test Mode	Mode 1		

	Phase Of Power : Neutral (N)					
	Frequency	Correction	Reading Value	Emission Level	Limit	Margin
No		Factor	(dBuV)	(dBuV)	(dBuV)	(dB)
	(MHz)	(dB)	Q.P.	Q.P.	Q.P.	Q.P.
1	0.15225	10.12	39.51	49.63	99.00	-49.37
2	0.38160	10.13	39.38	49.51	99.00	-49.49
3	1.14452	10.14	22.49	32.63	93.00	-60.37
4	8.41059	10.34	32.70	43.04	93.00	-49.96
5	12.58350	10.47	39.59	50.06	93.00	-42.94
6	20.88375	10.66	27.94	38.60	93.00	-54.40

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

6 Radiated Disturbance up to 1 GHz

6.1 Limits

Frequency (MHz)	dBuV/m (at 10m) / quasi-peak
30 - 230	40
230 - 1000	47

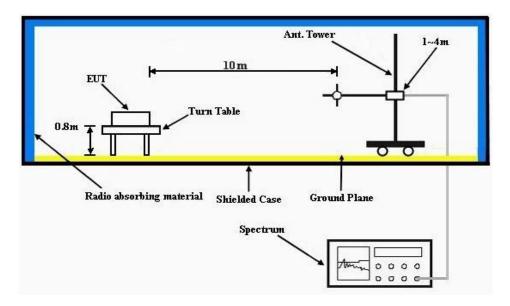
Notes: 1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

6.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ (V)	ESR	101240	Oct. 30, 2018	Oct. 29, 2019
Test Receiver ROHDE & SCHWARZ (H)	ESR	101264	Apr. 10, 2019	Apr. 09, 2020
BILOG Antenna SCHWARZBECK (V)	VULB9168	9168-148	Nov. 20, 2018	Nov. 19, 2019
BILOG Antenna SCHWARZBECK (H)	VULB9168	9168-156	Nov. 20, 2018	Nov. 19, 2019
Preamplifier Sonoma (V)	310N	352924	Jun. 11, 2019	Jun. 10, 2020
Preamplifier Sonoma (H)	310N	352923	Jun. 11, 2019	Jun. 10, 2020
RF signal cable (with 5dB PAD) Times (V)	LMR-600 (18M) +LMR-400 (7M)	CABLE-CH1 (VER) -01	Oct. 03, 2018	Oct. 02, 2019
RF signal cable (with 5dB PAD) Times (H)	LMR-600 (11.8M) +LMR-400 (7M)	CABLE-CH1 (HOR) -01	Oct. 03, 2018	Oct. 02, 2019
Software BV ADT	BV ADT_Radiated_ V8.7.08	NA	NA	NA
Antenna Tower (V)	MFA-440	9707	NA	NA
Antenna Tower (H)	MFA-440	970705	NA	NA
Turn Table	DS430	50303	NA	NA
Controller (V)	MF7802	074	NA	NA
Controller (H)	MF7802	08093	NA	NA

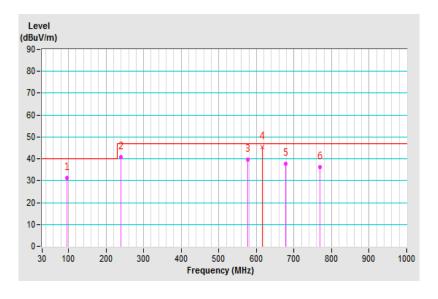
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


- 2. The test was performed in HwaYa Chamber 1.
- 3. The VCCI Site Registration No. is R-11893.

6.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited test facility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is up to 1 GHz.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for quasipeak detection (QP) at frequency up to 1 GHz.

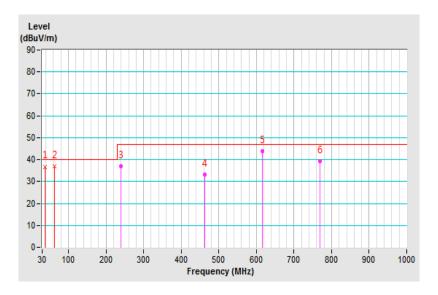


6.4 Test Results

Frequency Range	30MHz ~ 1GHz	Detector Function & Bandwidth	Quasi-Peak (QP), 120kHz
Tested by	Mick Chou	Environmental Conditions	27℃, 65%RH
Test Mode	Mode 1	Test Date	2019/7/23

	Antenna Polarity & Test Distance : Horizontal at 10 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	95.96	31.26 QP	40.00	-8.74	4.00 H	162	49.65	-18.39	
2	239.97	40.62 QP	47.00	-6.38	4.00 H	315	54.67	-14.05	
3	577.50	39.77 QP	47.00	-7.23	2.00 H	16	45.38	-5.61	
4	615.99	45.27 QP	47.00	-1.73	2.00 H	50	50.06	-4.79	
5	677.60	37.57 QP	47.00	-9.43	1.50 H	268	42.06	-4.49	
6	770.00	36.09 QP	47.00	-10.91	2.00 H	16	39.55	-3.46	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	30MHz ~ 1GHz	Detector Function & Bandwidth	Quasi-Peak (QP), 120kHz
Tested by	Mick Chou	Environmental Conditions	27℃, 65%RH
Test Mode	Mode 1	Test Date	2019/7/23

	Antenna Polarity & Test Distance : Vertical at 10 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	38.45	36.77 QP	40.00	-3.23	3.00 V	209	51.02	-14.25	
2	62.74	37.01 QP	40.00	-2.99	3.50 V	188	50.99	-13.98	
3	239.97	37.03 QP	47.00	-9.97	1.00 V	145	50.83	-13.80	
4	462.01	33.22 QP	47.00	-13.78	1.00 V	344	40.35	-7.13	
5	616.01	43.80 QP	47.00	-3.20	3.00 V	169	47.96	-4.16	
6	770.00	39.27 QP	47.00	-7.73	2.00 V	149	41.43	-2.16	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

7 Radiated Disturbance above 1 GHz

7.1 Limits

Fraguency (CUz)	Class A (dBu	V/m) (at 3 m)	Class B (dBuV/m) (at 3 m)		
Frequency (GHz)	Average	Peak	Average	Peak	
1 to 3	56	76	50	70	
3 to 6	60	80	54	74	

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

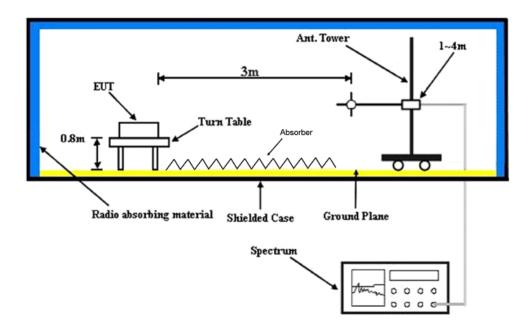
Frequency Range (For unintentional radiators)

Highest frequency generated or used in the EUT or on which the EUT operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1000
108-500	2000
500-1000	5000
Above 1000	Up to 5 times of the highest frequency or 6 GHz, whichever is less

7.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ (Above 1GHz)	ESR7	101471	Mar. 07, 2019	Mar. 06, 2020
Spectrum Analyzer Agilent	E4446A	MY51100039	Sep. 10, 2018	Sep. 09, 2019
RF signal cable (with 5dB PAD) Times	LMR-400 (18M)	CABLE-CH2-01	Mar. 25, 2019	Mar. 24, 2020
HORN Antenna (with 4dB PAD) SCHWARZBECK	BBHA 9120 D	9120D-405	Nov. 25, 2018	Nov. 24, 2019
Pre-Amplifier Agilent (Above 1GHz)	8449B	3008A01961	Oct. 15, 2018	Oct. 14, 2019
RF Coaxial Cable JUNFLON+EMC	JUNFLON+EMC10 4-SM-SM-6000	Cable-CH2- 02(MWX3221308G003+1307 10)	Jun. 11, 2019	Jun. 10, 2020
Software BV ADT	BV ADT_Radiated_ V8.7.08	NA	NA	NA
Antenna Tower BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Controller BV ADT	SC100	SC93021702	NA	NA
RF Coaxial Cable EMCI	EMC102-KM-KM- 1000	170819	Dec. 21, 2018	Dec. 20, 2019
RF Coaxial Cable Rosnol	K1K50-UP0279- K1K50-3000	181129-1	Dec. 21, 2018	Dec. 20, 2019

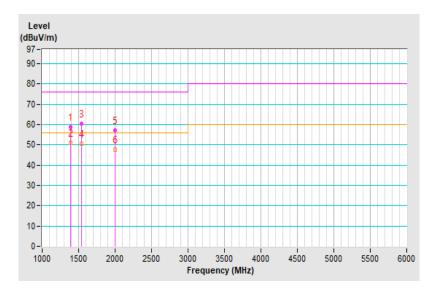
Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


- 2. The test was performed in HwaYa Chamber 2.
- 3. The VCCI Site Registration No. is G-10018.

7.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3 dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The spectrum analyzer system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

Note: The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1 GHz.

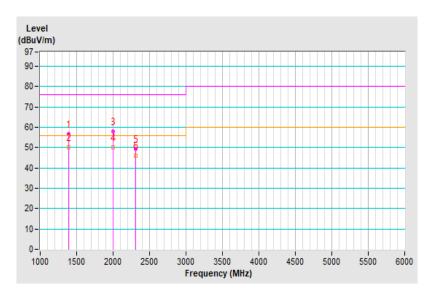


7.4 Test Results

Frequency Range	1GHz ~ 6GHz	Detector Function & Bandwidth	Peak (PK) / Average (AV), 1MHz
Tested by	James Chang	Environmental Conditions	26℃, 70%RH
Test Mode	Mode 1	Test Date	2019/7/24

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1386.02	58.61 PK	76.00	-17.39	1.17 H	191	59.93	-1.32	
2	1386.02	50.96 AV	56.00	-5.04	1.17 H	191	52.28	-1.32	
3	1540.00	60.49 PK	76.00	-15.51	1.03 H	225	62.04	-1.55	
4	1540.00	50.35 AV	56.00	-5.65	1.03 H	225	51.90	-1.55	
5	2002.06	56.95 PK	76.00	-19.05	1.40 H	149	56.76	0.19	
6	2002.06	47.76 AV	56.00	-8.24	1.40 H	149	47.57	0.19	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	1GHz ~ 6GHz	Detector Function & Bandwidth	Peak (PK) / Average (AV), 1MHz
Tested by	James Chang	Environmental Conditions	26℃, 70%RH
Test Mode	Mode 1	Test Date	2019/7/24

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1386.07	56.78 PK	76.00	-19.22	1.25 V	163	58.10	-1.32	
2	1386.07	50.01 AV	56.00	-5.99	1.25 V	163	51.33	-1.32	
3	2002.01	57.78 PK	76.00	-18.22	1.13 V	174	57.59	0.19	
4	2002.01	50.03 AV	56.00	-5.97	1.13 V	174	49.84	0.19	
5	2309.97	49.17 PK	76.00	-26.83	1.47 V	161	47.76	1.41	
6	2309.97	46.03 AV	56.00	-9.97	1.47 V	161	44.62	1.41	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

8 Electrostatic Discharge Immunity Test (ESD)

8.1 Test Specification

Basic Standard: EN/IEC 61000-4-2 **Discharge Impedance:** 330 ohm / 150 pF

Discharge Voltage: Air Discharge: ±2, ±4, ±8kV (Direct)

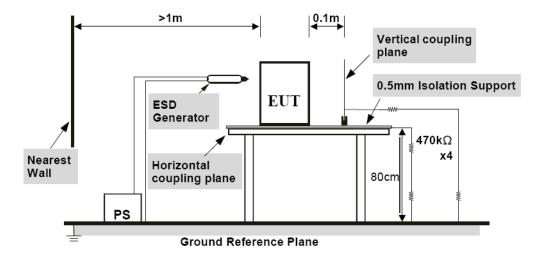
Contact Discharge: ±2, ±4kV, ±6kV (Direct/Indirect)

Number of Discharge: Minimum 20 times at each test point

Discharge Mode: Single Discharge Discharge Period: 1-second minimum

8.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
EM Test ESD Generator	Dito//DM- 150/330//DM- 150/330-rfci	P1315117252	Jul. 17, 2019	Jul. 16, 2020


Notes: 1. The test was performed in Hwa Ya ESD Room 3.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

8.3 Test Arrangement

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

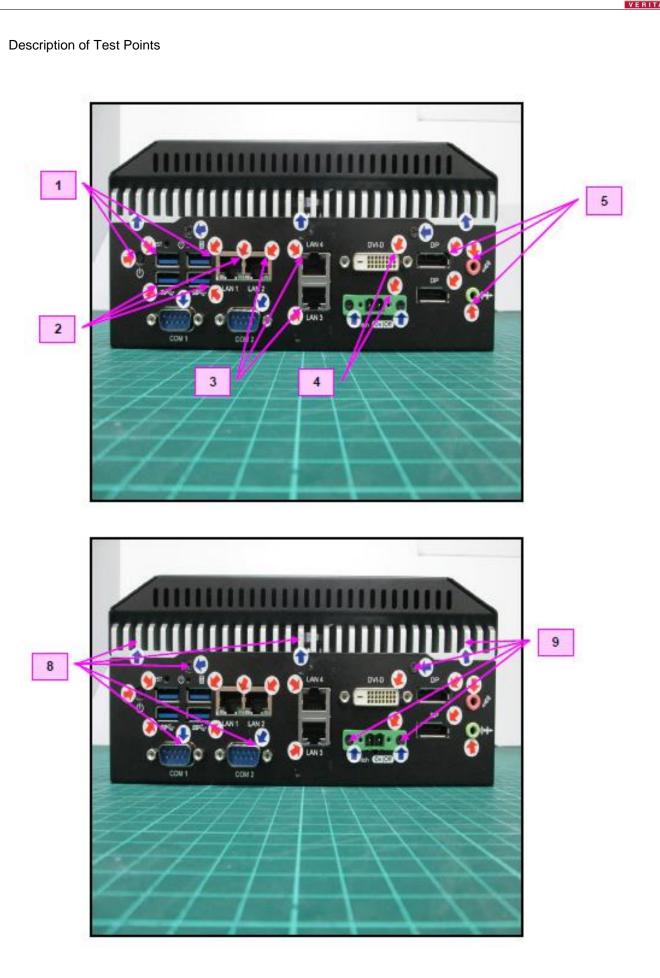
8.4 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Shawn Huang
Environmental Conditions	23 °C, 45% RH 988 mbar	Test Date	2019/12/13
Test mode	1		

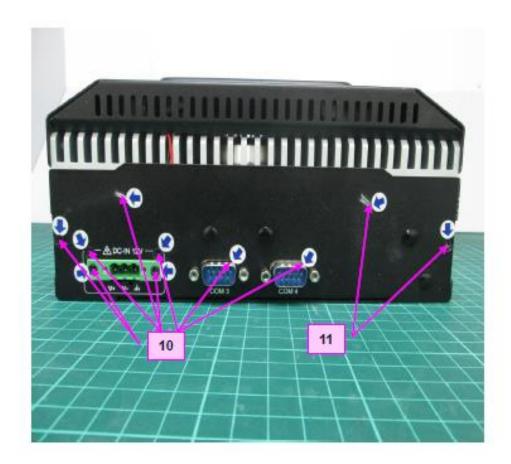
Test Results of Direct Application					
Discharge Level (kV)	Polarity (+/-)	Test Point	Contact Discharge	Air Discharge	Performance Criterion
2, 4	+/-	1-7	N/A	Note 1	Α
8	+/-	1-7	N/A	Note 2	В
2, 4	+/-	8-17	Note 1	N/A	А
6	+/-	8-17	Note 2	N/A	В

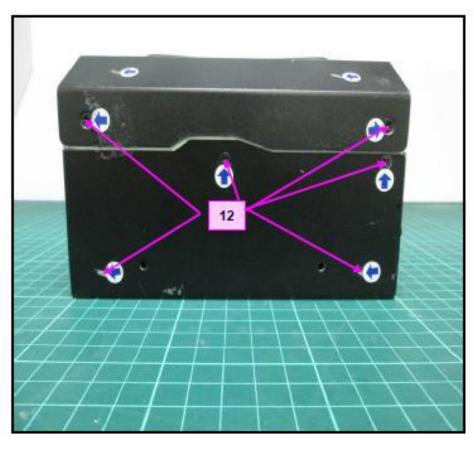
Description of test points of direct application: Please refer to following page for representative mark only.

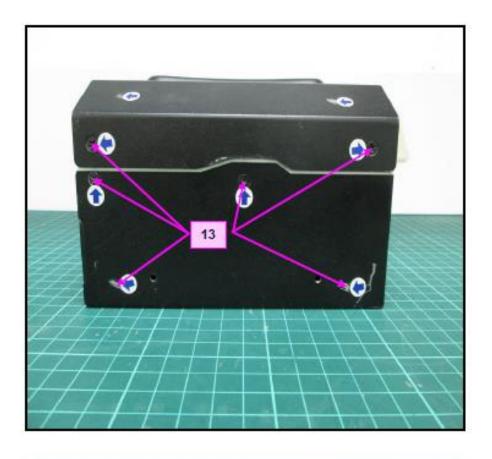
Test Results of Indirect Application					
Discharge Level (kV)	Polarity (+/-)	Test Point	Horizontal Coupling Plane	Vertical Coupling Plane	Performance Criterion
2, 4, 6	+/-	Four Sides	Note 1	Note 1	А

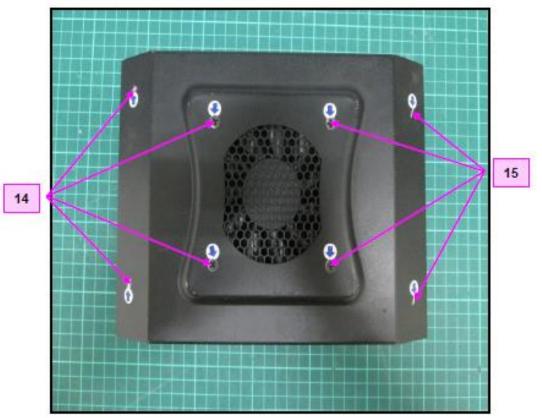

Description of test points of indirect application:

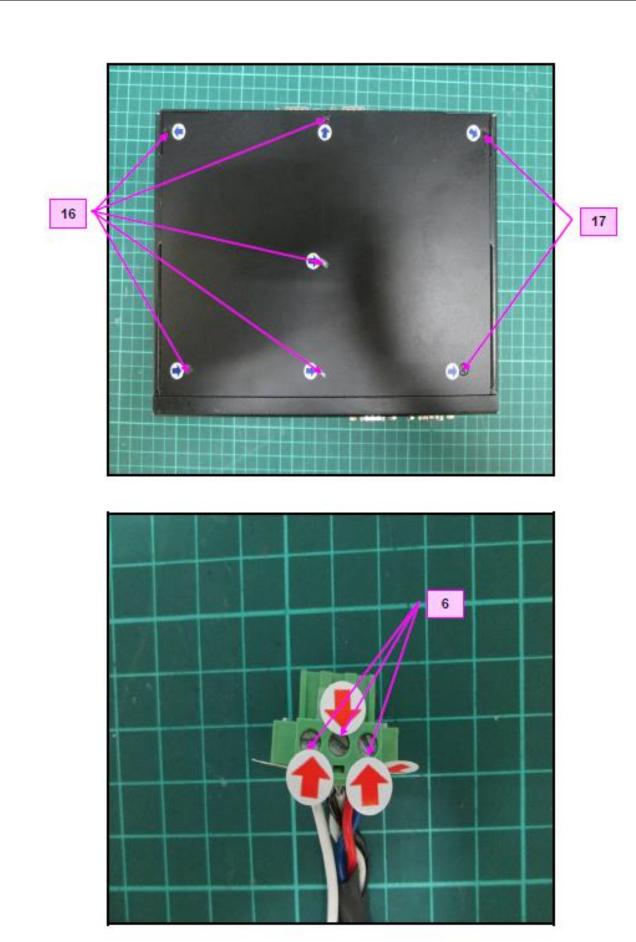
- 1. Front side
- 2. Rear side
- 3. Right side
- 4. Left side

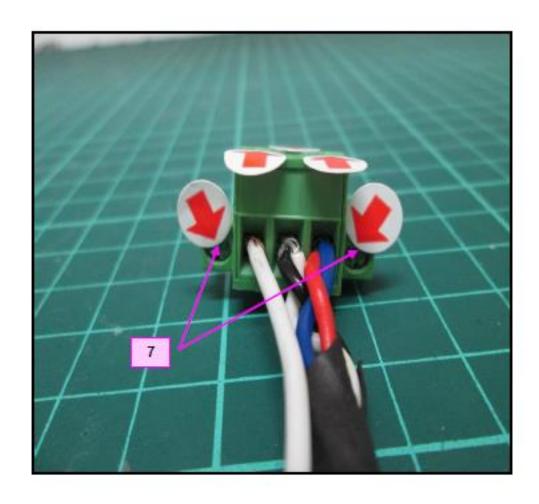

Note: 1. The EUT function was correct during the test.


2. The DP monitor had flickered during the test, but could self -recover to the initial operation after the test.









9 Radio-frequency Electromagnetic Field Immunity Test (RS)

9.1 Test Specification

Basic Standard: EN/IEC 61000-4-3

80-1000 MHz, 20V/m¹

Frequency Range, Field 1400-2000 MHz, 10V/m Strength: 2100-2700 MHz, 5V/m

5100-6000 MHz, 3V/m

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Polarity of Antenna: Horizontal and Vertical

Antenna Height: 1.55m

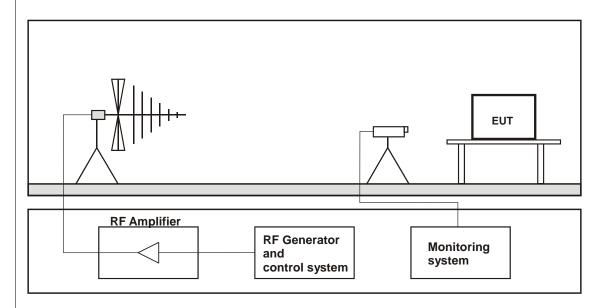
Dwell Time: 3 seconds

Note 1: This limit applies to equipment mounted in the passenger compartments, drivers cab or external to the rolling stock (roof, underframe). For equipment mounted in all other areas a severity level of 10 V/m may be used.

9.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
BONN Power Amp	BLMA 1060-100/50D	118694	NA	NA
BBA Power Amp	B250C125	101011	NA	NA
Power Sensor	NRP-Z91	101572	Jan. 24, 2019	Jan. 23, 2020
Power Sensor	NRP-Z91	101573	Dec. 03, 2019	Dec. 02, 2020
Signal Generator	SMB100A	105801	Dec. 03, 2019	Dec. 02, 2020
R&S Software	EMC32 Version 8.52.0	NA	NA	NA
Stacked Log-Per Antenna	STLP9149	9149-141	NA	NA
High GAIN LOG-Periodic Antenna	HL046E	100114	NA	NA

Notes: 1. The test was performed in Hwa Ya RS Room 2.


- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The transmit antenna was located at a distance of 3 meters from the EUT.

9.3 Test Arrangement

The test procedure was in accordance with EN/IEC 61000-4-3.

- a. The testing was performed in a fully chamber.
- b. The frequency ranges and field strength levels are 80-1000 MHz, 20V/m, 1400-2100 MHz, 10V/m, 2100-2500 MHz, 5V/m, 3V/m with the signal 80% amplitude modulated with a 1kHz sine wave.
- c. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

9.4 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Water Su
Environmental Conditions	23 °C, 58% RH	Test Date	2019/12/11
Test mode	1		

Frequency	Polarity	Azimuth(°)	Applied Field Strength Observation		pplied Field Strength Observation		Performance
(MHz)	Folality	Azimum)	(V/m)	Modulation	Observation	(m)	Criterion
80 - 1000	V&H	0, 90, 180, 270	20	80% AM (1kHz)	Note 1	1.5	А
1400 - 2000	V&H	0, 90, 180, 270	10	80% AM (1kHz)	Note 1	3	А
2000 - 2700	V&H	0, 90, 180, 270	5	80% AM (1kHz)	Note 1	3	А
5100 - 6000	V&H	0, 90, 180, 270	3	80% AM (1kHz)	Note 1	3	А

Note: 1. The EUT function was correct during the test.

10 Electrical Fast Transient/Burst Immunity Test (EFT)

10.1 Test Specification

Basic Standard: EN/IEC 61000-4-4

Test Voltage: Signal & communication, process measurement & control ports: ±2kV,

Capacitive clamp

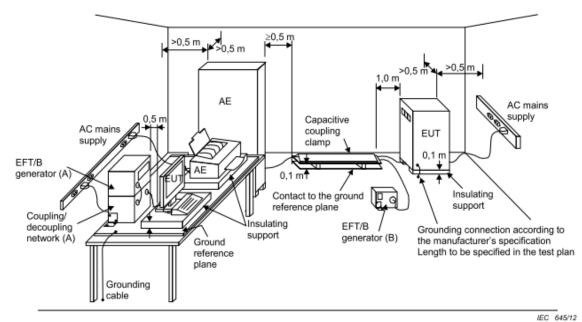
Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms): ±2kV

Impulse Repetition Frequency: 5kHz

Impulse Wave Shape: 5/50 (T_r/T_h) ns

Burst Duration: 15 ms
Burst Period: 300 ms
Test Duration: 1 min.

10.2 Test Instruments


Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
EMC Immunity Test System	NSG 3060/ CDN 3061/ VAR 3005-S16/ CDN 3425	1385/1355/857/1 763	Jun. 26, 2019	Jun. 25, 2020

Notes: 1. The test was performed in Hwa Ya EMS Room 2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

10.3 Test Arrangement

- a. Both positive and negative polarity discharges were applied.
- b. The distance between any coupling devices and the EUT should be 0.5 m for table-top equipment testing, and 1.0 m for floor standing equipment.
- c. The duration time of each test sequential was 1 minute.
- d. The transient/burst waveform was in accordance with EN/IEC 61000-4-4, 5/50 ns.

Report No.: CE190717C16-1 Page No. 39 / 55 Report Format Version: 6.1.1

10.4 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Regan Wang
Environmental Conditions	23 °C, 62% RH	Test Date	2019/12/06
Test mode	1		

Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms)

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
2	L1	+/-	Note 1	A
2	L2	+/-	Note 1	A
2	PE	+/-	Note 1	A
2	L1-L2-PE	+/-	Note 1	A

Note: 1. The EUT function was correct during the test.

Input Power	230 Vac, 50 Hz	Tested by	Regan Wang
Environmental Conditions	23 °C, 62% RH	Test Date	2019/12/06
Test mode	2		

Signal & communication, process measurement & control ports

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
2	LAN 1	+/-	Note 1	A

Note: 1. The EUT function was correct during the test.

Input Power	230 Vac, 50 Hz	Tested by	Regan Wang
Environmental Conditions	23 °C, 62% RH	Test Date	2019/12/06
Test mode	3		_

Signal & communication, process measurement & control ports

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
2	LAN 4	+/-	Note 1	Α

Note: 1. The EUT function was correct during the test.

11 Surge Immunity Test

11.1 Test Specification

Basic Standard: EN/IEC 61000-4-5

Wave-Shape: Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms):

1.2/50 μs Open Circuit Voltage 8/20 μs Short Circuit Current

Test Voltage: Line to line: ±0.5kV, ±1kV,

Line to ground: ±0.5kV, ±1kV, ±2kV

output impedance of 42 Ω (40 Ω and 2 Ω generator) and a coupling

capacitance of 0,5 µF

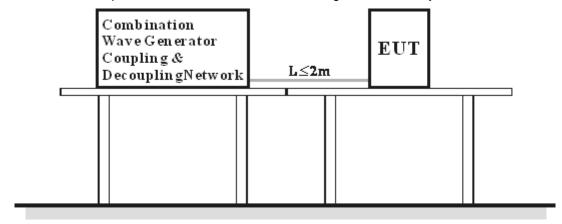
AC Phase Angle (degree): 0°, 90°, 180°, 270° Pulse Repetition Rate: 1 time / 60 sec.

Number of Tests: 5 positive and 5 negative at selected points

11.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
EMC Immunity Test System	NSG 3060	1385	Jun. 26, 2019	Jun. 25, 2020
EMC Immunity Test System	CDN 3061	1355	Jun. 26, 2019	Jun. 25, 2020
EMC Immunity Test System	VAR 3005-S16	857	Jun. 26, 2019	Jun. 25, 2020
Surge CDN	CDN HSS-2	36541	Jun. 26, 2019	Jun. 25, 2020
CDN for Unshielded symmetrical signal & Data Lines	CDN 118 / INA 172 / INA 175 / INA 180 / INA 181 / INA 182 / INA 183	33882 / 33245 / 35809 / 35806 / 35909 / 35912 / 35917 / 35927	Jun. 26, 2019	Jun. 25, 2020

Notes: 1. The test was performed in Hwa Ya EMS Room 2.


2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

11.3 Test Arrangement

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

For double-insulated products without PE or external earth connections, the test shall be done in a similar way as for grounded products but without adding any additional external grounded connections. If there are no other possible connections to earth, line-to-ground tests may be omitted.

11.4 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Regan Wang
Environmental Conditions	23 °C, 62% RH	Test Date	2019/12/09
Test mode	1		

Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms)

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
0.5, 1	L1-L2	+/-	Note 1	А
0.5, 1, 2	L1-PE	+/-	Note 1	Α
0.5, 1, 2	L2-PE	+/-	Note 1	A

Note: 1. The EUT function was correct during the test.

12 Immunity to Conducted Disturbances Induced by RF Fields (CS)

12.1 Test Specification

Basic Standard: EN/IEC 61000-4-6 Frequency Range: 0.15 MHz - 80 MHz

Voltage Level: Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms), Signal &

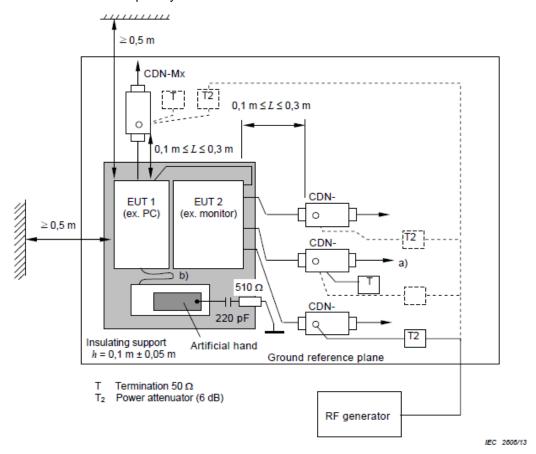
communication, process measurement & control ports: 10 V

Modulation: 1kHz Sine Wave, 80%, AM Modulation Frequency Step: 1 % of preceding frequency value

Dwell Time 3 seconds

12.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
FCC POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-M1-25A	03030	Mar. 05, 2019	Mar. 04, 2020
Coupling Decoupling Network TESEQ	CDN T8-10	39921	Mar. 04, 2019	Mar. 03, 2020
EMI Injection Clamp	F203I-23MM	434	Mar. 05, 2019	Mar. 04, 2020
FCC SIGNAL LINE POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-M2/M3-16A	112388	Mar. 04, 2019	Mar. 03, 2020
R&S Power Amplifier	BBA100	101012	NA	NA
R&S Signal generator	SMB100A	105802	Jan. 30, 2019	Jan. 29, 2020
R&S Software	EMC32 Version 8.52.0	NA	NA	NA
Power Sensor	NRP-Z91	101574	Jul. 01, 2019	Jun. 30, 2020
Power Sensor	NRP-Z91	101575	Jun. 05, 2019	Jun. 04, 2020


Notes: 1. The test was performed in Hwa Ya CS Room 2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

12.3 Test Arrangement

- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. An artificial hand was placed on the hand-held accessory and connected to the ground reference plane.
- c. One of the CDNs not used for injection was terminated with 50 ohm, providing only one return path. All other CDNs were coupled as decoupling networks.
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. Where the frequency is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value.
- e. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

a) Only one of the CDNs not used for injection shall be terminated with 50 Ω, providing only one return path. All other CDNs shall be configured as decoupling networks.

Interconnecting cables (≤ 1 m) belonging to the EUT shall remain on the insulating support.

12.4 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Howand Yang
Environmental Conditions	22 °C, 59% RH	Test Date	2019/12/09
Test mode	1		

Frequency (MHz)	Level (V rms)	Tested Line	Injection Method	Return Path	Observation	Remark	Performance Criterion
0.15 – 80	10	AC	CDN-M3	CDN-M1	Note 1	-	Α

Note: 1. The EUT function was correct during the test.

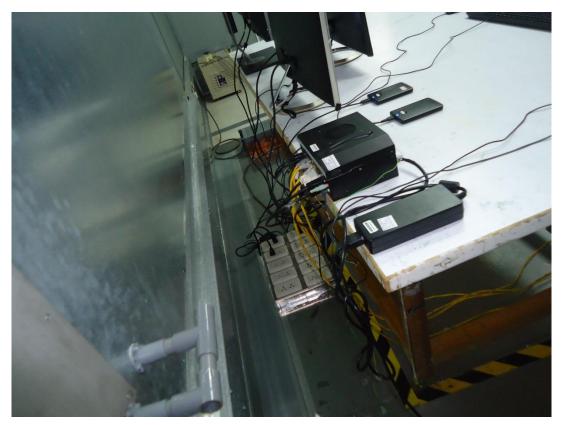
Input Power	230 Vac, 50 Hz	Tested by	Evan Liao
Environmental Conditions	22 °C, 59% RH	Test Date	2019/12/10
Test mode	2		

Frequency (MHz)	Level (V rms)	Tested Line	Injection Method	Return Path	Observation	Remark	Performance Criterion
0.15 - 80	10	LAN 1	CDN-T8	CDN-M1	Note 1	-	Α

Note: 1. The EUT function was correct during the test.

Input Power	230 Vac, 50 Hz	Tested by	Evan Liao
Environmental Conditions	22 °C, 59% RH Test Date		2019/12/10
Test mode	3		

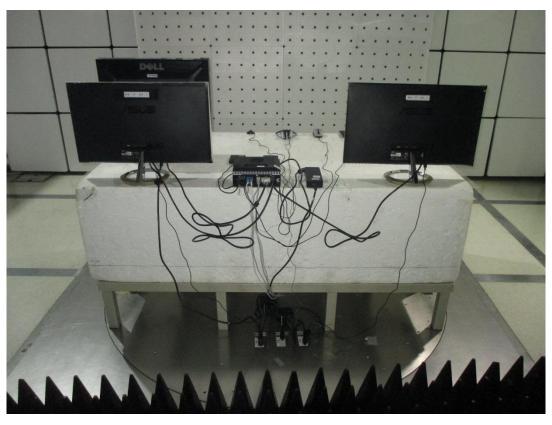
Frequency (MHz)	Level (V rms)	Tested Line	Injection Method	Return Path	Observation	Remark	Performance Criterion
0.15 – 80	10	LAN 4	CDN-T8	CDN-M1	Note 1	-	Α


Note: 1. The EUT function was correct during the test.

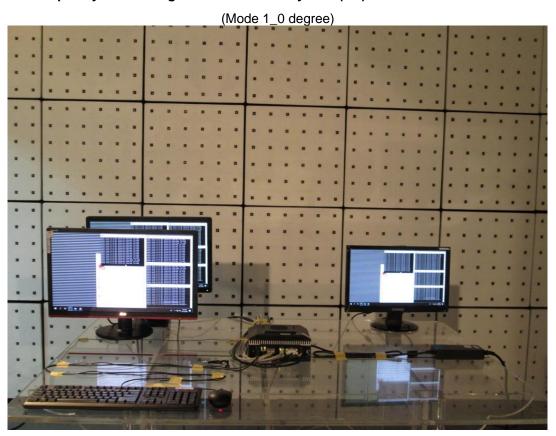
13 Pictures of Test Arrangements

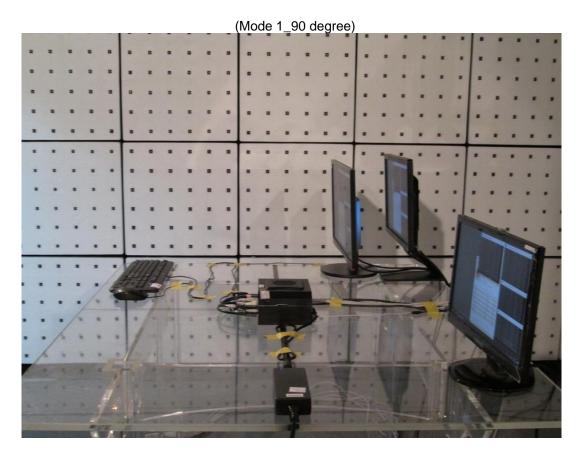
13.1 Conducted Disturbance at Auxiliary a.c. or d.c. power ports

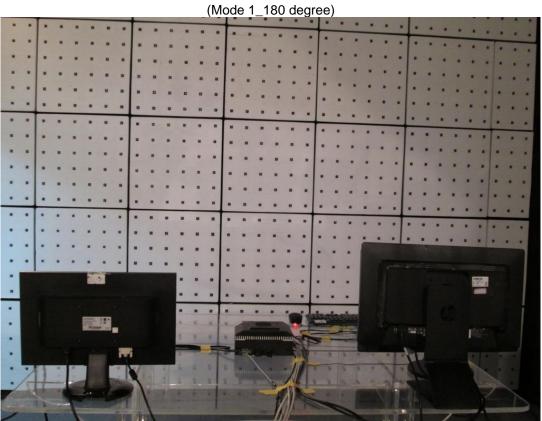
13.2 Radiated Disturbance up to 1 GHz



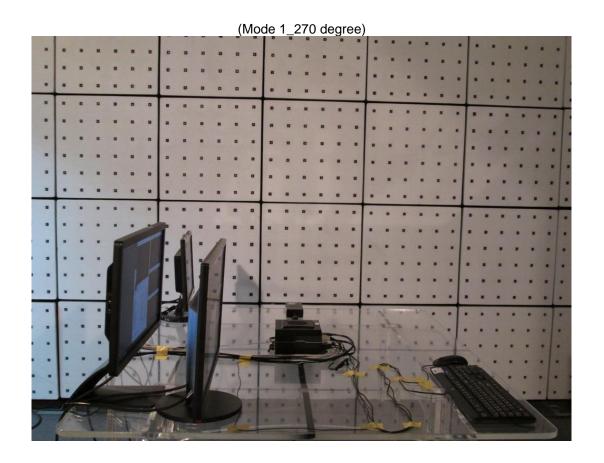
13.3 Radiated Disturbance above 1 GHz

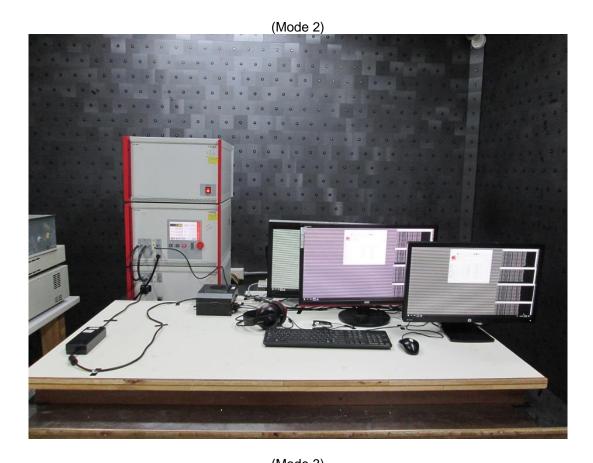


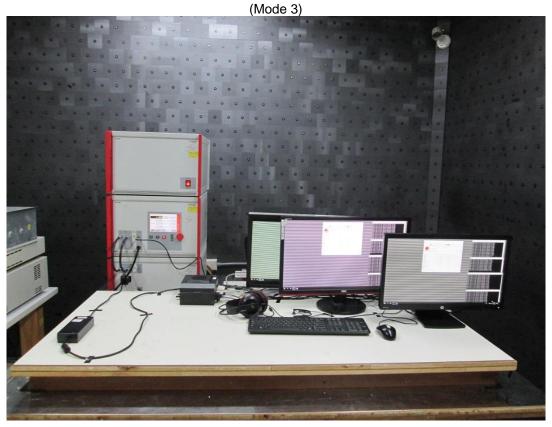

13.4 Electrostatic Discharge Immunity Test (ESD)



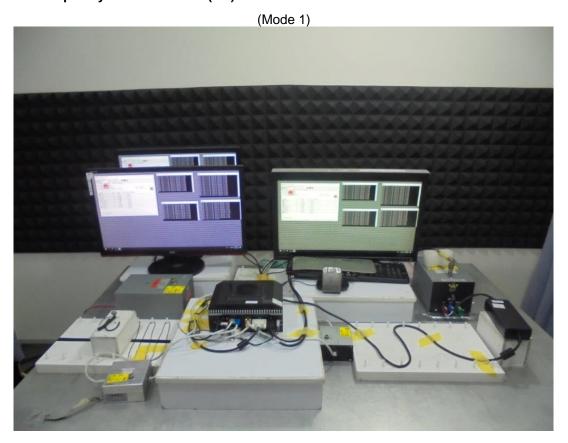
13.5 Radio-frequency Electromagnetic Field Immunity Test (RS)







13.6 Fast Transients (EFT)



13.7 Surge

13.8 Radio-frequency common mode (CS)

(Mode 2)

(Mode 3)

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---